Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 495
Filtrar
1.
Neuromolecular Med ; 26(1): 19, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38703217

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder associated with mitochondrial dysfunctions and oxidative stress. However, to date, therapeutics targeting these pathological events have not managed to translate from bench to bedside for clinical use. One of the major reasons for the lack of translational success has been the use of classical model systems that do not replicate the disease pathology and progression with the same degree of robustness. Therefore, we employed a more physiologically relevant model involving alpha-synuclein-preformed fibrils (PFF) exposure to SH-SY5Y cells and Sprague Dawley rats. We further explored the possible involvement of transient receptor potential canonical 5 (TRPC5) channels in PD-like pathology induced by these alpha-synuclein-preformed fibrils with emphasis on amelioration of oxidative stress and mitochondrial health. We observed that alpha-synuclein PFF exposure produced neurobehavioural deficits that were positively ameliorated after treatment with the TRPC5 inhibitor clemizole. Furthermore, Clemizole also reduced p-alpha-synuclein and diminished oxidative stress levels which resulted in overall improvements in mitochondrial biogenesis and functions. Finally, the results of the pharmacological modulation were further validated using siRNA-mediated knockdown of TRPC5 channels, which also decreased p-alpha-synuclein expression. Together, the results of this study could be superimposed in the future for exploring the beneficial effects of TRPC5 channel modulation for other neurodegenerative disorders and synucleopathies.


Assuntos
Mitocôndrias , Estresse Oxidativo , Ratos Sprague-Dawley , Canais de Cátion TRPC , alfa-Sinucleína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Animais , Ratos , Estresse Oxidativo/efeitos dos fármacos , Humanos , Canais de Cátion TRPC/genética , Canais de Cátion TRPC/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Linhagem Celular Tumoral , Masculino , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/induzido quimicamente , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/farmacologia , RNA Interferente Pequeno/uso terapêutico , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/tratamento farmacológico
2.
Brain Res ; 1834: 148893, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38554797

RESUMO

Parkinson's disease (PD) is characterized by the progressive loss of dopaminergic neurons in the substantia nigra. The dopamine D3 receptor (D3R) plays a significant role in the pathogenesis and treatment of PD. Activation of receptor tyrosine kinases (RTKs) inhibits signaling mediated by G protein-coupled receptor (GPCR). Epidermal growth factor receptors (EGFRs) and dopamine D3 receptors in the brain are directly associated with PD, both in terms of its development and potential treatment. Therefore, we investigated the impact of modulating the EGFR, a member of the RTKs family, and the dopamine D3R, a member of the GPCR family. In the present study, 100 mg/kg of lapatinib (LAP) was administered to rotenone-intoxicated rats for three weeks. Our findings indicate that LAP effectively alleviated motor impairment, improved histopathological abnormalities, and restored dopaminergic neurons in the substantia nigra. This restoration was achieved through the upregulation of dopamine D3R and increase of tyrosine hydroxylase (TH) expression, as well as boosting dopamine levels. Furthermore, LAP inhibited the activity of p-EGFR, GRK2, and SCR. Additionally, LAP exhibited antioxidant properties by inhibiting the 4-hydroxynonenal (4-HNE) and PLCγ/PKCßII pathway, while enhancing the antioxidant defense mechanism by increasing GSH-GPX4 pathway. The current study offers insights into the potential repositioning of LAP as a disease-modifying drug for PD. This could be achieved by modulating the dopaminergic system and curbing oxidative stress.


Assuntos
Neurônios Dopaminérgicos , Receptores ErbB , Lapatinib , Transtornos Parkinsonianos , Receptores de Dopamina D3 , Rotenona , Animais , Masculino , Ratos , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/metabolismo , Receptores ErbB/metabolismo , Receptores ErbB/antagonistas & inibidores , Lapatinib/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Receptores de Dopamina D3/metabolismo , Receptores de Dopamina D3/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Substância Negra/efeitos dos fármacos , Substância Negra/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
3.
Mol Neurobiol ; 61(2): 953-970, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37674036

RESUMO

Cypermethrin impairs mitochondrial function, induces redox imbalance, and leads to Parkinsonism in experimental animals. Knockdown of deglycase-1 (DJ-1) gene, which encodes a redox-sensitive antioxidant protein, aggravates cypermethrin-mediated α-synuclein overexpression and oxidative alteration of proteins. DJ-1 is also reported to be essential for maintaining stability of nuclear factor erythroid 2-related factor 2 (Nrf2), shielding cells against oxidative insult. Leucine-rich repeat kinase 2 (LRRK2), another protein associated with Parkinson's disease, is also involved in regulating mitochondrial function. However, underlying molecular mechanisms remain elusive. The study intended to explore an interaction of DJ-1, LRRK2, and Nrf2 in the regulation of mitochondrial function in cypermethrin-induced Parkinsonism. Small interfering RNA-mediated knockdown of DJ-1 and LRRK2 gene and pharmacological activation of Nrf2 were performed in rats and/or human neuroblastoma cells with or without cypermethrin. Indexes of oxidative stress, mitochondrial impairment, and Parkinsonism along with α-synuclein expression, post-translational modification, and aggregation were measured. DJ-1 gene knockdown exacerbated cypermethrin-induced increase in oxidative stress and intrinsic apoptosis and reduction in expression of mitochondrial antioxidant proteins via inhibiting nuclear translocation of Nrf2. Additionally, cypermethrin-induced oxidative stress, mitochondrial impairment, and α-synuclein expression and aggregation were found to be suppressed by LRRK2 gene knockdown, by promoting Nrf2 nuclear translocation and expression of mitochondrial antioxidant proteins. Furthermore, Nrf2 activator, sulforaphane, ameliorated cypermethrin-induced mitochondrial impairment and oxidative stress and provided protection against dopaminergic neuronal death. The findings indicate that DJ-1 and LRRK2 independently alter Nrf2-mediated changes and a complex interplay among DJ-1, LRRK2, and Nrf2 exists in the regulation of mitochondrial function in cypermethrin-induced Parkinsonism.


Assuntos
Antioxidantes , Transtornos Parkinsonianos , Piretrinas , Animais , Humanos , Ratos , alfa-Sinucleína/metabolismo , Antioxidantes/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Mitocôndrias/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo
4.
Food Chem Toxicol ; 181: 114069, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820786

RESUMO

Parkinson's disease (PD) is characterized by motor impairments and progressive dopaminergic neuronal death in the substantia nigra (SN). Recently, the involvement of other regulated cell death (RCD) machineries has been highlighted in PD. Necroptosis is controlled by p-RIPK1, p-RIPK3, and p-MLKL and negatively regulated by caspase-8. Ferroptosis is characterized by iron overload and accumulation of reactive oxygen species. Interestingly, the molecular chaperone complex HSP90/CDC37 has been reported to directly regulate necroptosis, ferroptosis, and some PD-associated proteins. We investigated the potential anti-necroptotic and anti-ferroptotic effects of the anti-cancer drug pazopanib, uncovering the HSP90/CDC37 complex as a master RCD modulator in rotenone-induced Parkinsonism in rats. Oral administration of 15 mg/kg pazopanib to rotenone-intoxicated rats for three weeks improved motor deficits, debilitated histopathological changes, and increased striatal dopaminergic levels. Pazopanib suppressed LRRK2 and c-Abl. Pazopanib displayed an anti-necroptotic effect through inhibition of the p-RIPK1/p-RIPK3/p-MLKL pathway and activation of caspase-8. Moreover, pazopanib inhibited the ferroptotic p-VEGFR2-PKCßII-PLC-γ-ACSL-4 pathway, iron, 4-HNE, and PTGS2 while increasing GPX-4 and GSH levels. Taken together, the current research sheds light on the repositioning of pazopanib targeting HSP90/CDC37 and its multiple RCD mechanisms, which would offer a new perspective for therapeutic strategies in PD.


Assuntos
Ferroptose , Doença de Parkinson , Transtornos Parkinsonianos , Ratos , Animais , Rotenona/toxicidade , Caspase 8/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Doença de Parkinson/metabolismo , Dopamina/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo
5.
Pharmacoepidemiol Drug Saf ; 32(12): 1378-1386, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37491627

RESUMO

BACKGROUND: The disease burden of parkinsonism is extremely costly in the United States. Unlike Parkinson's disease, drug-induced parkinsonism (DIP) is acute and reversible; exploring the causative drug is important to prevent DIP in patients at high-risk of parkinsonism. OBJECTIVE: To examine whether the use of gastrointestinal (GI) prokinetics is associated with an increased risk of parkinsonism. METHODS: We conducted a case-crossover study using nationally representative data. We included patients who were newly diagnosed with parkinsonism (ICD-10 G20, G21.1, G25.1) between January 1, 2007 and December 1, 2015. The first prescription date of G20, G21.1, or G25.1 diagnoses was defined as the index date (0 day). Patients with prior extrapyramidal and movement disorders or brain tumors were excluded. We assessed the exposure within the risk (0-29 days) and control periods (60-89 days), before or on the index date. Conditional logistic regression estimated the adjusted odds ratio (aOR) for parkinsonism. RESULTS: Overall, 2268 and 1674 patients were exposed to GI prokinetics during the risk and control periods, respectively. The use of GI prokinetics significantly increased the occurrence of parkinsonism (aOR = 2.31; 95% Confidence Interval [CI], 2.06-2.59). The use of GI prokinetics was associated with a higher occurrence of parkinsonism in elderly patients (≥65 years old; aOR = 2.69; 95% CI, 2.30-3.14) than in younger patients (aOR = 1.90; 95% CI, 1.59-2.27). CONCLUSIONS: The use of GI prokinetics was significantly associated with higher occurrences of parkinsonism, necessitating close consideration when using GI prokinetics.


Assuntos
Doença de Parkinson Secundária , Doença de Parkinson , Transtornos Parkinsonianos , Humanos , Estados Unidos/epidemiologia , Idoso , Estudos Cross-Over , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/epidemiologia , Estudos de Casos e Controles , Doença de Parkinson/epidemiologia , Doença de Parkinson/etiologia , Doença de Parkinson Secundária/induzido quimicamente , Doença de Parkinson Secundária/epidemiologia
6.
Nitric Oxide ; 134-135: 49-60, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054808

RESUMO

INTRODUCTION: Available studies have shown the involvement of nitric oxide (NO) in the processes that lead to neurodegeneration in Parkinson's disease (PD). Also, the use of inhibitors of the inducible isoform of NO-synthase (iNOS) promotes neuroprotection and attenuates dopamine (DA) loss in experimental models of Parkinsonism. In addition, NO also appears to be involved in cardiovascular changes in 6-hydroxydopamine (6-OHDA)-induced Parkinsonism. The current study aimed to evaluate the effects of iNOS inhibition on cardiovascular and autonomic function in animals that were subjected to Parkinsonism by the administration of 6-OHDA. MATERIALS AND METHODS: The animals underwent stereotaxic surgery for bilateral microinfusion of the neurotoxin 6-OHDA (6 mg/mL in 0.2% ascorbic acid in sterile saline solution) or vehicle solution for the Sham group. From the day of stereotaxis until the day of femoral artery catheterization, the animals were treated with the iNOS inhibitor, S-methylisothiourea (SMT; 10 mg/kg; i. p.) or saline solution (0.9%; i. p.) for 7 days. The animals were divided into four groups: Sham-Saline, Sham-SMT, 6-OHDA-Saline, and 6-OHDA-SMT. Subsequent analyses were performed on these four groups. After 6 days, they underwent catheterization of the femoral artery, and 24 h later, mean arterial pressure (MAP) and heart rate (HR) were recorded. Another group of animals (the 6-OHDA and Sham groups) was assessed for aortic vascular reactivity after 7 days of bilateral infusion of 6-OHDA or vehicle, in which cumulative concentration-effect curves (CCEC) were made for phenylephrine (Phenyl), acetylcholine and sodium nitroprusside (NPS). Also, CCEC in the presence of Nw-nitro-arginine-methyl-ester (l-NAME) (10-5 M), SMT (10-6 M), and indomethacin (10-5 M) blockers were made. RESULTS: The effectiveness of the 6-OHDA lesion was confirmed with the reduction of DA in 6-OHDA animals. However, treatment with SMT could not reverse the loss of DA. Concerning the baseline parameters, SBP and MAP values were lower in 6-OHDA animals compared to their Sham control, with no effect of treatment with SMT. In the analysis of SBP variability, a decrease in variance, the VLFabs component, and the LFabs component were observed in the 6-OHDA groups when compared to their controls, regardless of treatment with SMT. It was also observed that intravenous injections of SMT resulted in an increase in BP and a decrease in HR. However, the response was not different between the Sham and 6-OHDA groups. In vascular function, there was a hyporeactivity to Phenyl in the 6-OHDA group, and when investigating the mechanisms of this hyporeactivity, it was seen that the Rmax to Phenyl increased with incubation with SMT, indicating that iNOS could be involved in the vascular hyporeactivity of animals with Parkinsonism. CONCLUSION: Thus, the set of results presented in this study suggests that part of the cardiovascular dysfunction in animals subjected to 6-OHDA Parkinsonism may be peripheral and involve the participation of endothelial iNOS.


Assuntos
Sistema Cardiovascular , Transtornos Parkinsonianos , Animais , Masculino , Ratos , Dopamina , Inibidores Enzimáticos/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Oxidopamina/farmacologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Fenilefrina , Ratos Wistar , Solução Salina
7.
Eur J Pharmacol ; 941: 175517, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36669615

RESUMO

BACKGROUND: Apoptosis, oxidative stress, and neuroinflammation have been linked to the onset of Parkinson's disease (PD). Although the pre-treatment effects of Silibinin on a PD model have been evaluated, in the current study we investigated the chronic therapeutic effects of Silibinin microinjection on a rat model of established parkinsonism along with behavioral and laboratory markers assessments. METHOD: Parkinsonism was induced by 6-hydroxydopamine (6-OHDA, 8 µg/2µl/rat). 21 days after that, animals were treated with Silibinin (100, 200, and 300 mg/kg for 15 consecutive days). Every two days, the bar test was used to evaluate Silibinin's anti-cataleptic properties. At the end, myeloperoxidase (MPO) activity and toll-like receptor 4 (TLR4) expression in the substantia nigra pars compacta (SNc), along with cerebrospinal fluid (CSF) levels of tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1ß, IL-6, caspase-3, Bax and Bcl-2 levels were assessed. We used homology modeling to predict the 3D structure of TLR4. RESULT: Silibinin's Chronic treatment, dose-dependently decreased catalepsy. MPO activity and levels of TNF-α, IL-6, and IL-1ß were reduced in Silibinin-treated rats in all three doses. Silibinin decreased Bax/Bcl-2 ratio, caspase-3, and downregulated TLR4 expression. Molecular docking revealed that there were hydrophobic and hydrogen bond interactions between the studied ligand and TLR4. Silibinin formed a stable complex with both monomer and dimer forms of TLR4. CONCLUSION: In accordance with molecular modeling and alleviation of TLR4 activity with a consequent reduction in oxidative stress, restoration of CSF inflammatory cytokine, and minimization of SNc neuronal apoptosis, long-term therapy with Silibinin offers a potential opportunity for symptomatic PD treatment.


Assuntos
Doença de Parkinson , Transtornos Parkinsonianos , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Silibina/farmacologia , Silibina/uso terapêutico , Caspase 3 , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa , Interleucina-6 , Proteína X Associada a bcl-2 , Simulação de Acoplamento Molecular , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Oxidopamina , Proteínas Proto-Oncogênicas c-bcl-2
8.
Brain Res ; 1798: 148165, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36379316

RESUMO

The development of the closed-loop deep brain stimulator (DBS) for clinical trials requires verification of its safety and effectiveness in a large animal model. Due to the financial and ethical challenges of using non-human primates, it is reasonable to use an alternative large animal model. It was reported that minipigs are suitable for the establishment of the MPTP-induced parkinsonian model. However, there is currently no evidence of whether beta oscillations, the symptom-related biomarker, exist in the subthalamic nucleus (STN) of the parkinsonian minipig model. This study was to verify whether the beta oscillations could be recorded in the STN of the parkinsonian minipig model. Parkinsonism was induced by injections of the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Through a protocol involving up to nine subcutaneous or intramuscular injections, delivering a cumulative dose of 8-10 mg/kg MPTP, the minipigs developed notable movement disturbance. By stereotactic surgery and microelectrode recording, beta oscillations were recorded in the STN of the MPTP-injected minipigs. Immunohistochemistry of the tyrosine hydroxylase (TH) was performed in the substantia nigra pars compacta (SNc) of each animal. Compared with the control animal injected with saline, the TH-positive cells in the SNc were significantly reduced in the MPTP-injected minipigs. This study showed that beta oscillations could be recorded in the STN of the MPTP-induced parkinsonian minipig model. This large animal model is suitable as an alternative pre-clinical model for developing closed-loop DBS in the future.


Assuntos
Transtornos Parkinsonianos , Núcleo Subtalâmico , Animais , Suínos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Porco Miniatura/metabolismo , Transtornos Parkinsonianos/terapia , Transtornos Parkinsonianos/induzido quimicamente , Tirosina 3-Mono-Oxigenase/metabolismo , Modelos Animais de Doenças , Substância Negra/metabolismo
9.
J Chem Neuroanat ; 127: 102206, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464068

RESUMO

Parkinson's disease (PD) is a neurodegenerative illness described as damage to dopaminergic neurons. There is increasing evidence that neuroinflammatory activity mediated by microglia is extensively involved in the initiation and development of PD. This study assessed the protective effect of evening primrose oil [EPO] as an anti-inflammatory mediator in rotenone-induced Parkinsonism in rats. Forty-eight adult male albino rats were distributed into four groups. Group I: control. Group II: rotenone [1.5 mg/kg/48 h] was administered subcutaneously to the rats. Groups III and IV: the rats had rotenone plus daily oral [EPO] 5 and 10 mg/kg respectively. After 24 days, motor behaviour was assessed by the open field and rotarod tests. The brain striata were isolated and tested for tumor necrosis factor (TNF)-α, interleukin 6, NF-B [nuclear factor-kappa B], and dopamine levels. The mid-brain tissues were processed for light and electron microscopy examinations, and immunohistochemical staining for tyrosine hydroxylase [TH], and microglia cells' markers: [CD68 and IBA1]. Results revealed that rotenone-treated rats had poor motor function, a significantly increased striatal level of inflammatory markers, markedly shrunken neurons, degeneration, pyknotic neuroglia, neuropil vacuolation, markedly destructed swollen mitochondria with loss of their cristae, and dilated rough endoplasmic reticulum, as well as decreased TH and increased CD68 and IBA1-positive cells. Treatment with EPO ameliorates all the neuropathological changes of rotenone in the rat brain. In conclusion, EPO enhanced the motor performance, reduced the inflammatory marker levels, restored dopamine levels, and ameliorated the neurohistopathological lesions of rats with experimental parkinsonism, suggesting its neuroprotective and anti-inflammatory effects.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Transtornos Parkinsonianos , Animais , Masculino , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Dopamina , Microglia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/patologia , Rotenona/toxicidade , Ratos
10.
Life Sci ; 312: 121258, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36462721

RESUMO

AIMS: Parkinsonism is characterized by degeneration of dopaminergic neurons and impairment in neuroplasticity. Empagliflozin (EMPA) is an anti-diabetic drug that has been shown to improve cognitive dysfunctions and exerted antioxidant and anti-inflammatory effects in different models. This study aimed to determine the neuroprotective effects of EMPA against rotenone (ROT)-induced parkinsonism. MAIN METHODS: ROT (1.5 mg/kg) was injected subcutaneously three times per week for two successive weeks. Mice were treated with EMPA (3 and 10 mg/kg, orally) for one week prior ROT administration and for another two weeks along with ROT. After that, motor functions and histopathological changes were assessed, and brains were isolated for biochemical analyses and immunohistochemical investigation. KEY FINDINGS: Results indicated that, in a dose dependent manner, EMPA improved motor functions and histopathological changes induced by ROT, increased brain content of reduced glutathione (GSH), dopamine (DA), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), nuclear factor erythroid 2-related factor 2 (Nrf2), inositol trisphosphate (IP3), calcium (Ca2+), calcium/calmodulin-dependent protein kinase type IV (CaMKIV) and phospho-Protein kinase B (p-Akt) levels compared to ROT group. Additionally, EMPA decreased the levels of malondialdehyde (MDA), and tumor necrosis factor-α (TNF-α), and inactivated glycogen synthase kinase-3 beta (GSK-3ß). Improvement in neuroplasticity was also observed indicated by elevation in brain derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and neuronal PAS domain Protein 4 (Npas4). SIGNIFICANCE: EMPA improved motor functions possibly through improving neuroplasticity markers and antioxidant, anti-inflammatory, and neuroprotective effects in a dose dependent manner.


Assuntos
Fármacos Neuroprotetores , Transtornos Parkinsonianos , Animais , Camundongos , Rotenona/toxicidade , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Glicogênio Sintase Quinase 3 beta , Antioxidantes/farmacologia , Cálcio , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Plasticidade Neuronal , Anti-Inflamatórios/uso terapêutico , Fatores de Transcrição Hélice-Alça-Hélice Básicos/uso terapêutico
11.
Acta Pharmacol Sin ; 44(5): 940-953, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36357669

RESUMO

Dopaminergic neuron degeneration is a hallmark of Parkinson's disease (PD). We previously reported that the inactivation of von Hippel‒Lindau (VHL) alleviated dopaminergic neuron degeneration in a C. elegans model. In this study, we investigated the specific effects of VHL loss and the underlying mechanisms in mammalian PD models. For in vivo genetic inhibition of VHL, AAV-Vhl-shRNA was injected into mouse lateral ventricles. Thirty days later, the mice received MPTP for 5 days to induce PD. Behavioral experiments were conducted on D1, D3, D7, D14 and D21 after the last injection, and the mice were sacrificed on D22. We showed that knockdown of VHL in mice significantly alleviated PD-like syndromes detected in behavioral and biochemical assays. Inhibiting VHL exerted similar protective effects in MPP+-treated differentiated SH-SY5Y cells and the MPP+-induced C. elegans PD model. We further demonstrated that VHL loss-induced protection against experimental parkinsonism was independent of hypoxia-inducible factor and identified the Dishevelled-2 (DVL-2)/ß-catenin axis as the target of VHL, which was evolutionarily conserved in both C. elegans and mammals. Inhibiting the function of VHL promoted the stability of ß-catenin by reducing the ubiquitination and degradation of DVL-2. Thus, in vivo overexpression of DVL-2, mimicking VHL inactivation, protected against PD. We designed a competing peptide, Tat-DDF-2, to inhibit the interaction between VHL and DVL-2, which exhibited pharmacological potential for protection against PD in vitro and in vivo. We propose the therapeutic potential of targeting the interaction between VHL and DVL-2, which may represent a strategy to alleviate neurodegeneration associated with PD.


Assuntos
Proteínas Desgrenhadas , Doença de Parkinson , Proteína Supressora de Tumor Von Hippel-Lindau , Animais , Humanos , Camundongos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , beta Catenina/metabolismo , Caenorhabditis elegans/metabolismo , Modelos Animais de Doenças , Proteínas Desgrenhadas/efeitos dos fármacos , Proteínas Desgrenhadas/metabolismo , Dopamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Mamíferos , Camundongos Endogâmicos C57BL , Neuroblastoma/metabolismo , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/metabolismo , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética , Proteína Supressora de Tumor Von Hippel-Lindau/antagonistas & inibidores , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
12.
Pharmacol Res ; 182: 106338, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35781057

RESUMO

The lysosomal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) deactivates palmitoylethanolamide (PEA), a lipid-derived PPAR-α agonist that is critically involved in the control of pain and inflammation. In this study, we asked whether NAAA-regulated PEA signaling might contribute to dopamine neuron degeneration and parkinsonism induced by the mitochondrial neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In vitro experiments showed that 6-OHDA and MPTP enhanced NAAA expression and lowered PEA content in human SH-SY5Y cells. A similar effect was observed in mouse midbrain dopamine neurons following intra-striatal 6-OHDA injection. Importantly, deletion of the Naaa gene or pharmacological inhibition of NAAA activity substantially attenuated both dopamine neuron death and parkinsonian symptoms in mice treated with 6-OHDA or MPTP. Moreover, NAAA expression was elevated in postmortem brain cortex and premortem blood-derived exosomes from persons with Parkinson's disease compared to age-matched controls. The results identify NAAA-regulated PEA signaling as a molecular control point for dopaminergic neuron survival and a potential target for neuroprotective intervention.


Assuntos
Neuroblastoma , Transtornos Parkinsonianos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Amidoidrolases , Animais , Modelos Animais de Doenças , Dopamina , Neurônios Dopaminérgicos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Degeneração Neural/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico
13.
Metab Brain Dis ; 37(7): 2331-2347, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35779151

RESUMO

Parkinson's disease (PD) is identified by the loss of dopaminergic neurons in the Substantia Nigra pars compacta (SNpc), and is correlated to aggregates of proteins such as α-synuclein, Lewy's bodies. Although the PD etiology remains poorly understood, evidence suggests a main role of oxidative stress on this process. Lippia grata Schauer, known as "alecrim-do-mato", "alecrim-de-vaqueiro", "alecrim-da-chapada", is a native bush from tropical areas mainly distributed throughout the Central and South America. This plant species is commonly used in traditional medicine for relief of pain and inflammation conditions, and that has proven antioxidant effects. We evaluated the effects of essential oil of the L. grata after its complexed with ß-cyclodextrin (LIP) on PD animal model induced by reserpine (RES). Behavioral assessments were performed across the treatment. Upon completion the treatment, the animals were euthanized, afterwards their brains were isolated and processed for immunohistochemical and oxidative stress analysis. The LIP treatment delayed the onset of the behavior of catalepsy, decreased the number of oral movements and prevented the memory impairment on the novel object recognition task. In addition, the treatment with LIP protected against dopaminergic depletion in the SNpc and dorsal striatum (STRd), and decreased the α-syn immunoreactivity in the SNpc and hippocampus (HIP). Moreover, there was reduction of the oxidative stability index. These findings demonstrated that the LIP treatment has neuroprotective effect in a progressive parkinsonism model, suggesting that LIP could be an important source for novel treatment approaches in PD.


Assuntos
Lippia , Fármacos Neuroprotetores , Óleos Voláteis , Doença de Parkinson , Transtornos Parkinsonianos , beta-Ciclodextrinas , Animais , alfa-Sinucleína/metabolismo , Lippia/metabolismo , Reserpina , Óleos Voláteis/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Antioxidantes/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo , Doença de Parkinson/metabolismo , Neurônios Dopaminérgicos/metabolismo , Modelos Animais de Doenças , beta-Ciclodextrinas/efeitos adversos , Substância Negra/metabolismo
14.
Neurotoxicology ; 90: 158-171, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35337893

RESUMO

The neurobehavioral, brain redox-stabilizing and neurochemical modulatory properties of catechin and quercetin in rotenone-induced Parkinsonism, and the involvement of NF-κB-mediated inflammation, were investigated. Male Wistar rats subcutaneously administered with multiple doses of 1.5 mg/kg rotenone were post-treated with 5-20 mg/kg catechin or quercetin. This was followed by neurobehavioral evaluation, biochemical estimations, and assessment of neurotransmitter metabolism in the striatum. Expression of genes involved in the canonical pathway for the activation of NF-κB mediated inflammation (IL-1ß, TNF-α, NF-κB, and IκKB) and the pro-apoptotic gene, p53, in the striatum was determined by RT-qPCR. Catechin and quercetin mitigated neurobehavioral deficits caused by rotenone. Both flavonoids attenuated striatal redox stress and neurochemical dysfunction, optimized disturbed dopamine metabolism, and improved depletion of neuron density caused by rotenone toxicity. While administration of catechin produced a more pronounced attenuating effect on IL-1ß, TNF-α, and p53 genes, the attenuating effect of quercetin (20 mg/kg) was more pronounced on NF-κB and IκKB gene expressions when compared to the group administered with rotenone only. Comparatively, quercetin demonstrated superior protection against rotenone neurotoxicity. It is concluded that catechin and quercetin have potential relevance in Parkinson's disease therapy through amelioration of redox stress, optimization of dopamine metabolism, and modulation of anti-inflammatory and anti-apoptotic pathways.


Assuntos
Catequina , Fármacos Neuroprotetores , Transtornos Parkinsonianos , Animais , Catequina/efeitos adversos , Dopamina/metabolismo , Genes p53 , Inflamação/metabolismo , Masculino , NF-kappa B/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Estresse Oxidativo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Quercetina/farmacologia , Ratos , Ratos Wistar , Rotenona/toxicidade , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Int J Clin Pharmacol Ther ; 60(4): 184-187, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35102822

RESUMO

BACKGROUND: Trazodone is prescribed off-label to treat insomnia, especially in older, not depressed adults. At low doses, it blocks histamine-1 (H1) receptors having a hypnotic effect. Unusual but potentially severe side effects of trazodone include suicidal behavior, excess sedation, QT prolongation, and priapism. Three case studies have been published in the last four decades describing trazodone-induced parkinsonism. CASE PRESENTATION: A 78-year-old Caucasian male with a past medical history of paroxysmal atrial fibrillation (on amiodarone), major depressive disorder, chronic obstructive pulmonary disease, hypothyroidism, and obstructive sleep apnea, was prescribed trazodone for his chronic insomnia. After 1 month, he was seen in the emergency department (ED) with complaints of coarse tremors of his upper extremities and could not write with a pen anymore due to shaking. He noticed dragging of his feet while walking for over a month, which caused him to have multiple falls and significantly impacted his activities of daily living. On clinical exam, the patient had bilateral cogwheel rigidity in ankles and shuffling gait. Trazodone was discontinued, and his symptoms resolved within a week. CONCLUSION: Trazodone was likely causing parkinsonism in our patient. Amiodarone may have hindered trazodone metabolism causing higher levels in blood. Multiple mechanisms of trazodone's effect on dopamine have been suggested, but the serotonin-dopamine system interaction remains significant. Physicians need to contemplate the benefits and detriments before adding more medications to the list for older adults. Polypharmacy can amplify the adverse effects of a drug that might not be seen in everyday practice.


Assuntos
Transtorno Depressivo Maior , Transtornos Parkinsonianos , Trazodona , Atividades Cotidianas , Idoso , Transtorno Depressivo Maior/induzido quimicamente , Transtorno Depressivo Maior/tratamento farmacológico , Humanos , Masculino , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Trazodona/efeitos adversos
16.
Neurotoxicology ; 89: 121-126, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104500

RESUMO

BACKGROUND: Motor symptoms of Parkinson's disease (PD) are characterized by bradykinesia, resting tremor, rigidity, slow movement, impaired gait and postural instability, resulting from progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). Atractylon is a natural furan compound in Atractylodes rhizomes, exhibiting anticancer, anti-inflammation, antiviral and gastroprotective activities, and so on. However, it is still unknown whether atractylon is beneficial to motor dysfunctions of PD. METHODS: GPCR-targeted piggyBac-TANGO compound screening system, cAMP assay, and immunostaining of p-CREB and BDNF were used to identify dopamine 2 receptor (DRD2) activation. The effects of atractylon on motor deficits and gait disturbances, as well as tyrosine hydroxylase (TH) in the SNpc were investigated in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. RESULTS: Atractylon treatment increased the eGFP expression in dose-dependent manner in piggyBac-TANGO assay, decreased cAMP production, and enhanced the levels of p-CREB and BDNF in DRD2 highly expresseding SY-SY5Y cells. In MPTP-induced mice, atractylon improved the slow movement, diminished voluntary locomotion, and abnormal gait parameters, such as duration, cadence, average speed, step cycle, stride length, and so on. Moreover, atractylon rescued the TH positive cells in SNpc and TH positive nerve fibers in striatum. CONCLUSIONS: Atractylon could effectively activate DRD2, attenuate motor deficits and gait disorders, and protect dopaminergic neurons in MPTP-induced PD mice. Our findings stretch out the therapeutic potential of atractylon for motor symptoms of PD.


Assuntos
Agonistas de Dopamina , Transtornos Parkinsonianos , Sesquiterpenos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Corpo Estriado , Modelos Animais de Doenças , Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Sesquiterpenos/farmacologia , Substância Negra , Tirosina 3-Mono-Oxigenase/metabolismo
17.
Curr Aging Sci ; 15(1): 65-76, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-34042043

RESUMO

BACKGROUND: Parkinsonism is a neurodegenerative disorder that affects elderly people worldwide. METHODS: Curcumin, adenosine A2AR antagonist (ZM241385) and Sinemet® (L-dopa) were evaluated against Parkinson's disease (PD) induced by rotenone in rats, and the findings were compared to our previous study on mice model. RESULTS: Rats injected with rotenone showed severe alterations in adenosine A2A receptor gene expression, oxidative stress markers, inflammatory mediator, energetic indices, apoptotic marker and DNA fragmentation levels as compared to the control group. Treatments with curcumin, ZM241385, and Sinemet® restored all the selected parameters. The brain histopathological features of cerebellum regions confirmed our results. By comparing our results with the previous results on mice, we noticed that mice respond to rotenone toxicity and treatments more than rats with regards to behavioral observation, A2AR gene expression, neurotransmitter levels, inflammatory mediator and apoptotic markers, while rats showed higher response to treatments regarding oxidative stress and energetic indices. CONCLUSION: Curcumin succeeded in attenuating the severe effects of Parkinson's disease in the rat model and can be considered as a potential dietary supplement. Adenosine A2AR antagonist has almost the same pattern of improvement as Sinemet® and may be considered as a promising therapy against PD. To compare the role of animal species in response to PD symptoms and treatments, our previous report on mice explored the response of mice to rotenone toxicity in comparison with rats, where rats have shown a higher response to treatments. Therefore, no animal model can perfectly recapitulate all the pathologies of PD.


Assuntos
Curcumina , Fármacos Neuroprotetores , Doença de Parkinson , Transtornos Parkinsonianos , Adenosina , Idoso , Animais , Curcumina/farmacologia , Modelos Animais de Doenças , Agonistas de Dopamina , Humanos , Mediadores da Inflamação , Camundongos , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Ratos , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Rotenona/farmacologia
18.
J Biochem Mol Toxicol ; 36(2): e22949, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34850494

RESUMO

Parkinson's disease (PD) ranks as the second most neurodegenerative disease characterized by loss of neurons, bradykinesia, anosmia, sleep disorder, and motor deficiency with increased global prevalence. Here, we have analyzed daidzein's neuroprotective functions in in vitro and in vivo models of PD. BV2 microglial cells induced with lipopolysaccharide (LPS) and C57BL6 mice induced with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) were used in this study to investigate neuroprotective functions of daidzein. BV2 cells induced with LPS do not exert and significant (p < 0.05) reduction in cell viability up to concentration range (5-100 µM/ml). Furthermore, LPS exposed BV2 microglia exhibited significantly (p < 0.05) increased NO production, pro-inflammatory mediators PGE2, interleukin-6 (IL6), and interleukin-1ß (IL-1ß) levels. Treatment with daidzein (10, 25, and 50 µM/ml) to LPS-induced BV2 microglia exhibited significantly (p < 0.05) decreased NO, pro-inflammatory mediators PGE2, IL6, and IlL-1ß. Similar to the in vitro results, C57BL6 mice induced with MPTP showed defects in motor functions as observed from altered forelimb and hindlimb footprint analyses, grip strength, and perturbed motor coordination observed via rotarod tests. Additionally, levels of dopamine were significantly reduced, and pro-inflammatory mediators tumor necrosis factor alpha (TNF-α), IL-1ß, IL6 were found to be increased in MPTP-induced C57BL6 PD mice. Administering daidzein significantly restored the functional levels of dopamine and pro-inflammatory mediators TNF-α, IL-1ß, IL6 to near normal physiology as seen in healthy C57BL6 mice controls. Similarly, daidzein treatment to PD mice also restored the histological architecture to near normal levels as in control mice. Together, our results collectively endorse the neuroprotective functions of daidzein as observed from our initial studies, and further studies aimed at investigating daidzein's ability in regulating the catecholamine synthesis pathway to protect substantia nigra pars compacta (SNpc) neurons are in focus.


Assuntos
Isoflavonas/farmacologia , Lipopolissacarídeos/toxicidade , Microglia/metabolismo , Fármacos Neuroprotetores/farmacologia , Transtornos Parkinsonianos , Animais , Masculino , Camundongos , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Transtornos Parkinsonianos/metabolismo
19.
J Agric Food Chem ; 69(46): 13942-13952, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34779196

RESUMO

Rotenone, a component of pesticides, is widely used in agriculture and potentially causes Parkinson's disease (PD). However, the regulatory mechanisms of rotenone-induced PD are unclear. Here, we revealed a novel feedback mechanism of p38-Parkin-ROS regulating rotenone-induced PD. Rotenone treatment led to not only the activation of p38 but also Parkin inactivation and reactive oxygen species (ROS) overproduction in SN4741 cells. Meanwhile, p38 activation regulated Parkin phosphorylation at serine 131 to disrupt Parkin-mediated mitophagy. Notably, both p38 inhibition and Parkin overexpression decreased ROS levels. Additionally, the ROS inhibitor N-acetyl-l-cysteine (NAC) inhibited p38 and activated Parkin-mediated mitophagy. Both p38 inhibition and the ROS inhibitor NAC exerted a protective effect by restoring cell death and mitochondrial function in rotenone-induced PD models. Based on these results, the p38-Parkin-ROS signaling pathway is involved in neurodegeneration. This pathway represents a valuable treatment strategy for rotenone-induced PD, and our study provides basic research evidence for the safe use of rotenone in agriculture.


Assuntos
Inseticidas , Transtornos Parkinsonianos/induzido quimicamente , Espécies Reativas de Oxigênio , Rotenona , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Linhagem Celular , Retroalimentação Fisiológica , Inseticidas/toxicidade , Camundongos , Transtornos Parkinsonianos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Rotenona/toxicidade , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética
20.
Anesth Analg ; 133(5): 1140-1151, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34673725

RESUMO

BACKGROUND: Parkinson disease is a chronic and progressive movement disorder characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The causes of Parkinson disease are not clear but may involve genetic susceptibilities and environmental factors. As in other neurodegenerative disorders, individuals predisposed to Parkinson disease may have an accelerated onset of symptoms following perioperative stress such as anesthesia, surgery, pain, and inflammation. We hypothesized that anesthesia alone accelerates the onset of Parkinson disease-like pathology and symptoms. METHODS: A presymptomatic Parkinson rat model (the protein, DJ-1, encoded by the Park7 gene [DJ-1], PARK7 knockout) was exposed to a surgical plane of isoflurane or 20% oxygen balanced with nitrogen for 2 hours on 3 occasions between 6 and 7 months of age. Acute and long-term motor and neuropathological effects were examined from 7 to 12 months of age in male DJ-1 rats, using the ladder rung, rotarod, and novel object recognition assays, as well as the immunohistochemical localization of tyrosine hydroxylase in dopaminergic neurons in the substantia nigra and ionized calcium-binding adaptor protein-1 (Iba-1) microglial activation in the substantia nigra and hippocampus. RESULTS: In the acute group, after the third anesthetic exposure at 7 months of age, the isoflurane group had a significant reduction in the density of dopaminergic neurons in the SNpc compared to controls. However, this reduction was not associated with increased microglial activation in the hippocampus or substantia nigra. With the ladder rung motor skills test, there was no effect of anesthetic exposure on the total number of foot faults or the ladder rung pattern in the acute group. The rotarod test also detected no differences before and after the third exposure in controls. For the long-term group, immunohistochemical analyses detected no differences in the density of dopaminergic neurons or microglial cells compared to unexposed DJ-1 rats from 8 to 12 months of age. The ladder rung test in the long-term group showed no differences in the total number of foot faults with time and exposure or between ladder rung patterns. The rotarod test detected no significant effect of exposure with time or between groups at any time point. The novel object recognition task in the long-term group revealed no differences in short- or long-term memory or in the number of rearings as a function of exposure. CONCLUSIONS: Multiple isoflurane exposures in this rat model of Parkinson disease transiently enhanced dopaminergic neurodegeneration in the SNpc that resolved over time and had no effects on progression in this Parkinson disease-like phenotype.


Assuntos
Anestésicos Inalatórios/toxicidade , Neurônios Dopaminérgicos/efeitos dos fármacos , Isoflurano/toxicidade , Degeneração Neural , Transtornos Parkinsonianos/induzido quimicamente , Parte Compacta da Substância Negra/efeitos dos fármacos , Proteína Desglicase DJ-1/genética , Animais , Comportamento Animal/efeitos dos fármacos , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Técnicas de Inativação de Genes , Masculino , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia , Atividade Motora/efeitos dos fármacos , Teste de Campo Aberto/efeitos dos fármacos , Transtornos Parkinsonianos/genética , Transtornos Parkinsonianos/metabolismo , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Proteína Desglicase DJ-1/deficiência , Ratos Long-Evans , Ratos Transgênicos , Teste de Desempenho do Rota-Rod , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA